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Abstract
We corcider a model of oscillator with norpolynomial
interaction admitting exact solutions both for energy
eigznvalues in terms of zeros of Bessel functions considered
as “fu-nctions of the continuous indesx, and for the

cor-esponding eigenstates in terms of Lommel polynomials

Let us consider the following Hamiltonian,

H= wad a + K{a+ [a+cz + 1]—1"2 + [d+c1 + I]-i"'zcz} . (1)

Here a and a+ are usual hoson arnihilation and creation operators,
and A are positive real parameters (the generalization to complex
coupling constant X does not lead to any new result, since the phase
of A is trivially eliminated by the canonical transformation a -» déiw
preserving the energy spectrum!. If the mean number of guanta 1is
close to zero, then (1) turrs iptoc the Hamiltorian of ususal forced

c

of.

tilistor. In the opposite quasiclassical regime of large mean

- P < I - + e 3 5 . - N‘z [¢'
numbber of ewcitations N = <a a» = 1 the subkstitution = = =3
leade tc the erergv—independent interactior Hamiltonian

X = xcosp, (2
Lrit

which ig in fact exact, since the expression inside the figure brac-
ketse is mothing but the Susskind-Glogower cosine phase operator [13
which properties were discussed 1n detai in the known review by
Czrruther-g and Nieto I23.

Exparding the energy eigenstate |E? aover the Fock states
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and taking into account the known matrix elements of agperatcrs o and
2 ore can easily reduce the stationary Schroedinger eguation to the
follouwirg set of coupled linear algebraic equations,

Ecﬂ = Kci '
. X (
Ec wn + Af{e + e 7, nn o= 1 4
n - Th—d it

It is pcorvenient to introduce dimensicnless variables

=

= = Alw 5 = = E/w = (=)
Then normalized energy i is determined from the equation &(z2,u)=0,

where function § is the characteristic determinant of system (4):

—p 2 O (o] QO eessne
= l-p =z 0 O coews

EFlz,uy = O 2 2-u =z 0 evsse (5)
¢ o = 3-u P

Expanding this determinant over the elements of the first row one can
eacsily obtain the following recwrence relation,
Elz, ) = —pdlz, p-1) —-2°8(2, p-2). (7)
Introducing new function
Flz,u) = 2 PE(z,w (8)

one can rewrite (7) as follows,

Fez, w) + Flz, u-2) = -;g-th, L—1) . (9)
But this is the well known relation for Bessel functions [3T,43.
Consequently, the energy levels are determined by zeros of BReszel

functions in accordance with the eguation

M7 22y = o. {10)
._1_“
For zmall values of parameter & the well-known power series expansion

of the EBEessel function leades to the eguation

= - = 0. (11)
mlIrCm—p?
m=0

For 2z + 0 the solutions of this equation with respect to u are

determined by the poles of gamma-function. Evidently, they reproduce
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approvimately the equidistant harmonic oscill!ator spectrum: H xn 3

]

o= 0,1,2,++= Since all poles of gamma—functior are simple2, with the

residues (—l)ﬂ/n!, the correctior to the n—th energy level has the

order of =2V,

2 2(r+1)
H, X -2 H_ =n - = (12}

Note that all corrections are negative.

IV
1
L]

n + m=ey Nz

For large values of the coupling constant we can use the known
asymptcotiz formula

1.2

Iy, 22 = (n2) " “cos(2z + nu/2 + n/4). _ (13)

I._

Then for || « |z] the spectrum is eguidistant again, but with the

twice distance between the neighbouring energy levels:
pox 1/2 + 2n -Az/n + otz"". (14)
Here n is an arbitrary integer having the same order of magnitude as
the large parameter =. Note that energy values depend or the coupling

constant in a specific almost periodic manner:

p“(e) x “n+1(2 + /2. (15)
Now let us look again at eg. (4). Comparing it with different
recurrence relations for special functions given in [3,41, one can
recocnize that it is nothing but the equation for Lommel’'s polvyno-

mials (which are in fact polynomials with respect to 1/2)

2{ + n)

3 2> + R Cal = ————— k2> (146)
ri+4,1 n—4,1’} = T,
Conseqguently,
T8 et ' ) .
w C-123 Cn=t2Wrdn—-L-—u2 2l
P =N, 2)R__ (22> =N(u,=2) 22", (17)
T neH BT - T XN I T
1=0
wrere MNiug.2! is the normalizing factor. For example, the first three
coe*ficients c:“)= cyﬁ/N(y,z) are as follows,
N B N
c;“’ =1, c;“’ = u/z, c;"" = plu-1)/2° - 1 (18

Taking inte account (12) we have, e-g-, for the ground state

Moo oo N0 3
<. =1, < = =2, < =z, (19)
(s i 2

in conclusion let us discuss the correspondence between the

guantum problem under study and i*ts classical counterpart described

87



i1 *he energy — phase canonical variables

E = %c‘pz + g%, © = arccos [q..J’CE'E)"'Hz] (20)

wirth Hamiltonian
H = F + hcosg - (21)
Since thig Hamiltonian dependes linearly on the energy variable £, the

n

anonical equations of motion

JE-3t = IH-Ip, dpo-dt = —IH-IE (22)

car be found without difficulty for an arbitrary “potential® 7ig):

et = —t, ECtd = Eo + FCOO - fCp2- (23)
Howsve=, 1in  the guantum ca=se just the "potential” cose seems
distinguished. For ewample, if one takes instead of (2} tke interac-
tior Hamiltoriarm
B Eal 2
H = x[cgsp] . _ (24

wnt

~N
ther insztead of (&) and (7} one gets (u = g - 22)

- 8] = ) O s
0 1—; O = O ceaas

iz, ) = F=4 0 2—u 0 = N (25)
O Z & T—p 0 P- T

. ~ 2.V "
Fla, ) = —pFla, p-1) + 2 (-1 (=, u-3) + 25z, u-4) (26)

with unknown snlution.
Althouch the physical meaning of the guartum meodel with

Hamiltonian (1) is not clear at the moment {its "nearest naighbour”
H=E2 4 Acose describes the Josephson junctiocn), we kope that due
to ite beavty i+ will find applications in future.

The authors thank V.F.Farassiov for valuabls discus=ions.
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